Banner auf der Innenseite

Flansche

heim

Flansche

  • Die Eigenschaften und Anwendungen von Rohrböden aus Kohlenstoffstahl
    Apr 26, 2024
    Geschmiedetes Rohrblatt aus Kohlenstoffstahl, spezifisches MaterialGeschmiedete Rohrplatten aus Kohlenstoffstahl werden typischerweise aus Kohlenstoffstahlmaterialien wie Rohrplatten ASTM A105 oder Rohrplatten ASTM A350 LF2 hergestellt. Kohlenstoffstahl wird aufgrund seiner hohen Festigkeit und hervorragenden Bearbeitbarkeit ausgewählt, wodurch er für Umgebungen mit hohen Temperaturen und hohem Druck geeignet ist. Produktionsstandards für geschmiedete Rohrbleche aus KohlenstoffstahlDie Produktion von geschmiedeten Kohlenstoffstahl-Rohrplatten entspricht in der Regel relevanten Standards wie ASME (American Society of Mechanical Engineers) oder internationalen Standards. Diese Standards gewährleisten Produktqualität und -leistung, einschließlich Materialfestigkeit, Maßhaltigkeit und Schweißbarkeit. Abmessungen des geschmiedeten Rohrblatts aus KohlenstoffstahlDie Abmessungen geschmiedeter Rohrplatten aus Kohlenstoffstahl hängen von den spezifischen Design- und Anwendungsanforderungen ab. Typischerweise variieren der Durchmesser und die Anordnung der Rohrlöcher, die Plattendicke und die Gesamtabmessungen je nach den Spezifikationen und Funktionen der Ausrüstung.   Geschmiedete Rohrplatten aus Kohlenstoffstahl werden üblicherweise in den folgenden Anwendungen verwendet1.Wärmetauscher: Ein Wärmetauscher ist ein Gerät, das die Wärmeübertragung von Flüssigkeit im Rohr zur Energieumwandlung nutzt. Rohrplatten aus Kohlenstoffstahl werden häufig als Materialien für Rohre und Wärmetauscherbündel in Wärmetauschern verwendet und weisen eine hohe Korrosionsbeständigkeit und Drucktragfähigkeit auf. 2.Kessel: Rohrbleche aus Kohlenstoffstahl sind auch eines der wichtigsten Materialien bei der Herstellung von Kesseln und werden im Allgemeinen für die Rohre und einige Strukturkomponenten von Kesseln verwendet. Aufgrund ihrer hervorragenden mechanischen Eigenschaften, Festigkeit und hohen Korrosionsbeständigkeit können Rohrböden aus Kohlenstoffstahl den sicheren Betrieb von Kesseln gewährleisten. 3. Chemische Industrie: In petrochemischen Anlagen werden Rohrplatten aus Kohlenstoffstahl häufig als Materialien für Katalysatorrohre, Destillationstürme, Reaktoren und andere Geräte verwendet. Aufgrund ihrer hervorragenden Korrosionsbeständigkeit und zuverlässigen Drucktragfähigkeit gewährleisten Rohrplatten aus Kohlenstoffstahl die Sicherheit petrochemischer Geräte.    Vorteile von geschmiedeten Rohrplatten aus Kohlenstoffstahl1. Hohe Festigkeit: Kohlenstoffstahl bietet eine hervorragende Festigkeit und hält hohen Temperaturen und hohem Druck stand.2. Hervorragende Bearbeitbarkeit: Kohlenstoffstahl lässt sich leicht schmieden, schneiden und schweißen und eignet sich daher für verschiedene komplex geformte Rohrböden.3. Hochtemperaturbeständigkeit: Rohrböden aus Kohlenstoffstahl eignen sich gut für Umgebungen mit hohen Temperaturen und sind daher ideal für den Einsatz in Kesseln und Wärmetauschern.4. Korrosionsbeständigkeit: Obwohl sie korrosionsanfällig sind, können Rohrböden aus Kohlenstoffstahl mit geeigneten Beschichtungen und Schutzmaßnahmen dennoch in korrosiven Umgebungen verwendet werden.  Verarbeitungsschritte für geschmiedete Rohrbleche aus Kohlenstoffstahl1. Rohstoffvorbereitung: Wählen Sie Kohlenstoffstahlknüppel geeigneter Qualität.2. Schmieden: Erhitzen Sie die Knüppel auf die entsprechende Temperatur und formen Sie sie durch Schmiedeprozesse, indem Sie Hämmern oder Druck anwenden, um die gewünschte Form zu erreichen.3. Bearbeitung und Lochbohren: Schneiden und bohren Sie Rohrlöcher und achten Sie dabei auf genaue Abmessungen und Lochpositionen.4. Inspektion und Qualitätskontrolle: Führen Sie zerstörungsfreie und zerstörende Tests durch, um sicherzustellen, dass der Rohrboden den Spezifikationen und Standards entspricht.5. Oberflächenbehandlung: Zur Verbesserung der Korrosionsbeständigkeit können Oberflächenbehandlungen wie korrosionsbeständige Beschichtungen angewendet werden. Wuxi Changrun verfügt über ausgestattete Produktionsanlagen. Derzeit verfügt das Unternehmen über fünf Schmiedemaschinen, eine davon ist eine Schmiedemaschine mit einer Kapazität von 3600 Tonnen, eine ist eine numerisch gesteuerte Ringwalze mit einer Kapazität von 6300 mm (Durchmesser), eine besteht aus 1,5-Tonnen-Hämmern und die anderen beiden sind 1-Tonnen-Lufthämmer . Es gibt 7 Gasgeneratoren für die Schmiedeerwärmung, 16 industrielle Widerstandsöfen für die Wärmebehandlung und mehr als 80 Metallverarbeitungsgeräte, darunter eine numerisch gesteuerte Drehmaschine, deren Bearbeitungsdurchmesser 5 Meter erreichen kann. Das Unternehmen verfügt über eine jährliche Produktionskapazität von 50.000 Tonnen Mittel- und Hochdruckflanschen sowie verschiedenen Stahlschmiedeteilen für Kessel und Druckbehälter. Der maximale Druck der hergestellten Flansche kann 2500 Pfund erreichen, der maximale Durchmesser kann etwa 6 Meter erreichen und das maximale Gewicht der geschmiedeten Einheit kann 30 Tonnen erreichen.   AbschlussGeschmiedete Rohrplatten aus Kohlenstoffstahl spielen eine entscheidende Rolle in Wärmeaustausch- und Heizgeräten und bieten Festigkeit und Hochtemperaturbeständigkeit. Ihre Herstellung erfordert präzises Handwerk und Qualitätssicherung, um die Sicherheit und Zuverlässigkeit der Ausrüstung zu gewährleisten. Wuxi Changrun hat viele namhafte petrochemische Unternehmen im In- und Ausland mit hochwertigen Rohrböden, Düsen, Flanschen und maßgeschneiderten Schmiedeteilen für Wärmetauscher, Kessel, Druckbehälter usw. beliefert. Zu unseren Kunden zählen PetroChina, Sinopec, Chevron, Bayer, Shell, BASF usw. Senden Sie Ihre Zeichnungen an sales@wuxichangrun.com. Wir unterbreiten Ihnen das beste Angebot und Produkte von höchster Qualität.  
    WEITERLESEN
  • Was ist eine Doppelrohrbodenstruktur?ufeff
    Apr 29, 2024
    Was ist doppelt Rohrboden?Ein doppelter Rohrboden ist ein Konstruktionsmerkmal, das häufig in Rohrbündelwärmetauschern und anderen ähnlichen Geräten verwendet wird. In einem Rohrbündelwärmetauscher gibt es zwei Hauptkomponenten: den Mantel, bei dem es sich um einen großen Außenbehälter handelt, und die Rohre, bei denen es sich um kleinere Rohre handelt, die durch den Mantel verlaufen. Bei der Konstruktion mit doppeltem Rohrboden handelt es sich um zwei separate Rohrböden innerhalb des Gehäuses.  Doppelrohrbodenwärmetauscher werden im Allgemeinen in den folgenden zwei Situationen eingesetzt:Eine besteht darin, die Vermischung von Medien zwischen Mantel- und Rohrseite unbedingt zu verhindern. Wenn beispielsweise bei Wärmetauschern, bei denen Wasser durch die Mantelseite oder Chlorgas oder Chlorid durch die Rohrseite strömt, das Wasser auf der Mantelseite mit Chlorgas oder Chlorid auf der Rohrseite in Kontakt kommt, entsteht stark korrosive Salzsäure Säure oder hypochlorige Säure, die schwere Korrosion am Material auf der Rohrseite verursachen kann. Durch die Verwendung einer Doppelrohrbodenstruktur kann die Vermischung zweier Materialien wirksam verhindert werden, wodurch das Auftreten der oben genannten Unfälle verhindert wird. Ein weiteres Szenario liegt vor, wenn zwischen dem Medium auf der Rohr- und Mantelseite ein großer Druckunterschied besteht. Dabei wird üblicherweise ein Medium in den Hohlraum zwischen innerem und äußerem Rohrboden eingefüllt, um den Druckunterschied zwischen dem Medium auf der Rohr- und Mantelseite zu verringern. Diese Serie von Wärmetauschern verfügt über eine Doppelrohrplattenstruktur, die die Rohrseite und die Mantelseite mit ihren jeweiligen Rohrböden verbindet und damit die traditionelle Praxis bricht, die gleiche Verbindungsrohrplatte sowohl für die Rohrseite als auch für die Mantelseite eines Reihenrohrs zu verwenden Wärmetauscher. Dies minimiert das Risiko einer Kreuzkontamination, erleichtert die rechtzeitige Erkennung von Leckagegefahren und gewährleistet eine sichere Produktion für Benutzer.  Wie funktioniert ein Doppelrohrboden?1. Innenrohrplatte: Der erste Rohrboden befindet sich im Inneren des Mantels und befindet sich normalerweise näher an einem Ende. Die Rohre werden an diesem inneren Rohrboden befestigt und durchqueren diesen bis zum anderen Ende des Mantels. 2. Schallwandraum: Zwischen dem inneren Rohrboden und dem anderen Ende des Mantels befindet sich ein Raum, der Folgendes enthält Leitbleche. Leitbleche sind Platten oder andere Strukturen, die dazu dienen, den Flüssigkeitsstrom innerhalb der Hülle zu lenken und eine effiziente Wärmeübertragung zu fördern. 3. Außenrohrboden: Der zweite Rohrboden befindet sich am anderen Ende des Mantels. An diesem äußeren Rohrboden sind auch die Rohre befestigt.  Was sind die Vorteile des Doppelrohrbodendesigns?1. Verhindert Kreuzkontaminationen: Da es zwei Rohrböden gibt, gibt es zwischen ihnen einen Raum (den Prallraum). Dies trägt dazu bei, eine Kreuzkontamination zwischen den beiden durch die Rohre fließenden Flüssigkeiten zu verhindern, insbesondere wenn diese unterschiedliche Eigenschaften haben. 2. Erhöhte Sicherheit: Bei Anwendungen, bei denen eine Flüssigkeit gefährlich oder giftig ist, sorgt die Doppelrohrbodenkonstruktion für zusätzliche Sicherheit, indem sie das Risiko von Lecks verringert. 3. Reduziertes Risiko von Problemen mit der Wärmeausdehnung: Die Konstruktion mit doppeltem Rohrboden trägt dazu bei, Unterschiede in der Wärmeausdehnung zwischen den Rohren und dem Mantel auszugleichen. Dies ist wichtig, um Probleme zu vermeiden, die durch temperaturbedingte Ausdehnung und Kontraktion entstehen können. 4. Einfachere Inspektion: Der Raum zwischen den Rohrböden ermöglicht eine einfachere Inspektion der Rohre und erleichtert Wartungsarbeiten.  Zusammenfassend lässt sich sagen, dass es sich bei der Konstruktion mit doppeltem Rohrboden um eine Konfiguration handelt, die zur Verbesserung der Sicherheit, Effizienz und Wartungsfreundlichkeit bei bestimmten Arten von Wärmetauschern verwendet wird, insbesondere bei solchen, die potenziell gefährliche Flüssigkeiten verarbeiten. Wuxi Changrun hat viele namhafte petrochemische Unternehmen im In- und Ausland mit hochwertigen Rohrböden, Düsen, Flanschen und maßgeschneiderten Schmiedeteilen für Wärmetauscher, Kessel, Druckbehälter usw. beliefert. Zu unseren Kunden zählen PetroChina, Sinopec, Chevron, Bayer, Shell, BASF usw. Senden Sie Ihre Zeichnungen an sales@wuxichangrun.com Wir unterbreiten Ihnen das beste Angebot und die hochwertigsten Produkte.  
    WEITERLESEN
  • Einführung in zehn Arten von Rohrbündelwärmetauschern
    May 17, 2024
    Rohrbündelwärmetauscher machen etwa 90 % der gesamten in der Industrie eingesetzten Wärmetauscher aus und sind damit der am weitesten verbreitete Wärmetauschertyp. Zu den typischen Bauformen von Rohrbündelwärmetauschern gehören Festrohrwärmetauscher, U-Rohrwärmetauscher, Schwebekopfwärmetauscher, Stopfbuchswärmetauscher, Kesselaufkocher, Doppelrohrbodenwärmetauscher, Stützrohrbodenwärmetauscher und flexible Rohrböden Wärmetauscher und Spiralwärmetauscher. 1. Fester RohrbodenwärmetauscherDer Wärmetauscher mit festem Rohrboden (Abbildung 1) ist eine feste Verbindung (integriert oder geklemmt) zwischen den beiden Endrohrböden und dem Mantel.Dies ist der am weitesten verbreitete Wärmetauschertyp. Die beiden Enden des Wärmetauscherrohrs sind am Rohrboden befestigt, der mit dem Mantel verschweißt ist. Feststehende Rohrbodenwärmetauscher eignen sich für verschiedene Einsatzzwecke:1)In Situationen, in denen der Temperaturunterschied zwischen dem Metall auf der Rohr- und Mantelseite nicht sehr groß und der Druck hoch ist. Wenn der Temperaturunterschied zwischen dem Metall auf der Rohr- und Mantelseite groß ist, darf der Druck nicht zu hoch sein, da der große Temperaturunterschied zwangsläufig zu einer Vergrößerung der Dehnungsfuge führt, die eine geringe Druckbeständigkeit aufweist.2) Da die Mantelseite nicht mechanisch gereinigt werden kann, muss das Medium auf der Mantelseite sauber sein; Oder in Situationen, in denen Ablagerungen auftreten können, die jedoch durch chemische Reinigung entfernt werden können. Vorteile:1) Es hat eine einfache Struktur, weniger Einsatz von Schmiedeteilen und niedrige Herstellungskosten.2) Die Rohrseite kann in verschiedene Formen mehrerer Durchgänge unterteilt werden, und die Mantelseite kann ebenfalls in zwei Durchgänge unterteilt werden.3) Die Wärmeübertragungsfläche ist 20 bis 30 % größer als die eines Schwebekopfwärmetauschers.4) Die Bypass-Leckage ist relativ gering. Nachteile:1) Nicht geeignet für Situationen, in denen ein erheblicher Unterschied in der Wärmeausdehnungsverformung zwischen Wärmetauscherrohren und mantelseitigen Zylindern besteht, da es leicht zu Temperaturunterschiedsspannungen zwischen Rohrboden und Rohrende kommen kann, die zu Schäden führen können.2) Nach der Korrosion des Rohrs kommt es zur Verschrottung des Mantels, und die Lebensdauer der Mantelkomponenten wird durch die Lebensdauer des Rohrs bestimmt, sodass die Lebensdauer der Ausrüstung relativ gering ist.3) Die Schale kann nicht gereinigt werden und die Inspektion ist schwierig.  2. U-förmiger RohrwärmetauscherDer U-förmige Rohrwärmetauscher (Abbildung 2) ist ein Wärmetauscherrohr, dessen zwei Enden an derselben Rohrplatte befestigt sind und das fest mit dem Mantel verbunden ist (integriert oder geklemmt). U-förmige Rohrwärmetauscher können in den folgenden Situationen eingesetzt werden1) Der Durchfluss in der Rohrleitung ist eine saubere Flüssigkeit.2) Der Druck in der Rohrleitung ist besonders hoch.3) In Situationen, in denen ein großer Temperaturunterschied zwischen dem Metall auf der Rohr- und der Mantelseite besteht und feste Rohrplattenwärmetauscher nicht einmal die Anforderungen mit Kompensatoren erfüllen können. Vorteile:1) Das freie Schweben am Ende des U-förmigen Wärmetauscherrohrs löst die Temperaturunterschiedsspannung und kann für zwei Medien mit großen Temperaturunterschieden verwendet werden. Der Temperaturunterschied zwischen dem Metall auf der Rohr- und Mantelseite ist nicht begrenzt.2) Das Rohrbündel kann herausgezogen werden, um eine häufige Reinigung der Außenwand des Wärmetauscherrohrs zu erleichtern.3) Mit nur einer Rohrplatte und wenigen Flanschen ist der Aufbau einfach und es gibt wenige Leckstellen, was zu geringeren Kosten führt.4) Es kann bei hohen Temperaturen und hohem Druck arbeiten und ist im Allgemeinen für t ≤ 500 ℃ und p ≤ 10 MPa geeignet.5) Kann in Situationen verwendet werden, in denen die Ablagerungen auf der Mantelseite relativ stark ausgeprägt sind. Nachteile:1) Wenn die Durchflussrate im Rohr zu hoch ist, führt dies zu starker Erosion am U-förmigen Bogenabschnitt und beeinträchtigt dessen Lebensdauer. Insbesondere bei Rohren mit niedrigem R sollte die Durchflussrate im Rohr kontrolliert werden.2) Die Pipeline ist nicht für Situationen mit starker Skalierung geeignet.3) Aufgrund der Begrenzung des U-Rohr-Rmim und des großen Trennungsabstands ist die Anzahl der Rohre im Wärmetauscher mit festem Rohrboden etwas geringer.4) Wenn das Wärmetauscherrohr undicht ist, kann es mit Ausnahme des äußeren U-förmigen Rohrs nicht ersetzt und nur blockiert werden.5) Der zentrale Teil des Rohrbündels weist große Poren auf und die Flüssigkeit ist anfällig für Kurzschlüsse, was den Wärmeübertragungseffekt beeinträchtigt. Daher sollten Trennwände hinzugefügt werden, um Kurzschlüsse zu reduzieren.6) Aufgrund der großen Totzone nur für das innere Führungsrohr geeignet.7) Die Anzahl der auf der Rohrplatte angeordneten Wärmetauscherrohre ist relativ gering.8) Der U-förmige Biegeabschnitt des äußersten Rohrs sollte aufgrund seiner großen, nicht unterstützten Spannweite zu flüssigkeitsinduzierten Vibrationsproblemen führen.9) Wenn Anforderungen an Spannungskorrosion bestehen, sollten sorgfältige Überlegungen angestellt werden.  3. SchwimmkopfwärmetauscherDer Wärmetauscher mit schwimmendem Kopf (Abbildung 3) ist ein geklemmter Typ, bei dem ein Ende des Rohrbodens fest mit dem Gehäuse verbunden ist, während das andere Ende des Rohrbodens mit schwimmendem Kopf (einschließlich der schwimmenden Kopfabdeckung, der Stützvorrichtung usw.) schwimmt frei im Rohrkasten. Daher besteht keine Notwendigkeit, Temperaturunterschiedsspannungen zu berücksichtigen, da zwischen den Metallwänden des Rohrs und den Mantelseiten ein großer Temperaturunterschied besteht. Vorteile:1) Das Rohrbündel kann zur einfachen Reinigung der Rohr- und Mantelseite herausgezogen werden.2) Die Mantelwand und die Rohrwand werden nicht durch Temperaturunterschiede begrenzt.3) Es kann bei hohen Temperaturen und hohem Druck arbeiten, im Allgemeinen t ≤ 450 ℃ und p ≤ 6,4 MPa.4) Kann in Situationen mit starker Ablagerung verwendet werden.5) Kann in Pipeline-Korrosionsszenarien eingesetzt werden.  Nachteile:1) Es ist schwierig, Maßnahmen zu ergreifen, wenn während des Betriebs der Schwimmkopf-Dichtfläche im gehäuseseitigen Medium Leckagen auftreten.2) Komplexe Struktur, hoher Metallmaterialverbrauch und hohe Kosten.3) Die schwimmende Kopfstruktur ist komplex und beeinflusst die Anzahl der angeordneten Rohre.4) Die bei der Druckprüfung verwendete Druckprüfvorrichtung ist komplex.5) Metallmaterialien verbrauchen eine große Menge und verursachen 20 % höhere Kosten.  StopfbuchswärmetauscherEin Ende des Rohrbodens ist fest mit dem Mantel verbunden (Klemmentyp), während das andere Ende des Rohrbodens frei im Stopfbuchskasten schwebt. Das Rohrbündel ist erweiterbar und für zwei Medien mit großer Temperaturdifferenz einsetzbar. Der Aufbau ist zudem einfacher als der eines Schwebekopf-Wärmetauschers, wodurch er einfacher herzustellen und kostengünstiger als ein Schwebekopf-Wärmetauscher ist. Da das Rohrbündel herausziehbar ist, ist es leicht zu warten und zu reinigen. Geeignet für den Einsatz in Medien mit starker Korrosion. 4.1 Außenliegender gepackter Wärmetauscher (Abbildung 4)Geeignet für Geräte mit einem Durchmesser unter DN700 mm, und der Betriebsdruck und die Temperatur sollten nicht zu hoch sein. Es wird im Allgemeinen in Situationen verwendet, in denen p ≤ 2,0 MPa. 4.2 Wärmetauscher mit Gleitrohrboden-StopfbuchseAn der Dichtungsstelle auf der Innenseite der Packung kommt es immer noch zu einem Strömungsphänomen zwischen dem Medium auf der Rohr- und Mantelseite, was nicht für Situationen geeignet ist, in denen sich das Medium auf der Rohr- und Mantelseite nicht vermischen darf. 4.2.1 Einzelstopfbuchsenwärmetauscher (Abbildung 5)An der Dichtungsstelle auf der Innenseite der Packung kommt es immer noch zu einem Strömungsphänomen zwischen dem Medium auf der Rohr- und Mantelseite, was nicht für Situationen geeignet ist, in denen sich das Medium auf der Rohr- und Mantelseite nicht vermischen darf. 4.2.2 Doppelstopfbuchsenwärmetauscher (Abbildung 6)Die Struktur wird hauptsächlich mit dem Innenring abgedichtet, um interne und externe Leckagen zu verhindern, während der Außenring als Hilfsdichtung dient, um externe Leckagen zu verhindern. Zwischen dem inneren und dem äußeren Dichtungsring ist ein Leckageauslassrohr angebracht, das mit der Niederdruck-Entlüftungsleitung verbunden ist. Diese Struktur kann für mittelschwere, explosive und andere Medien verwendet werden.  5. KWasserkocher Der Kesselaufkocher (Abbildung 7) ist eine feste Verbindung (Klemmtyp) zwischen einem Ende des Rohrbodens und dem Mantel, und das andere Ende ist ein U-förmiges oder schwimmendes Kopfrohrbündel. Die Mantelseite ist ein einfacher (oder doppelter) geneigter Kegelmantel mit Verdampfungsraum, sodass die Temperatur und der Druck auf der Rohrseite höher sind als auf der Mantelseite. Im Allgemeinen wird das Medium auf der Mantelseite durch das Medium auf der Rohrseite erwärmt. P ≤ 6,4 MPa.Vorteile:1) Geeignet für Boden-Reboiler und Seitenleitungs-Siphon-Reboiler.2) Sparen Sie über 25 % des Gerätegewichts.3) Gute Korrosionsbeständigkeit.4) Es hat einen selbstreinigenden Effekt. In Situationen, in denen ein großer Temperaturunterschied zwischen Rohr- und Mantelseite besteht.5) Der Gesamtwärmeübergangskoeffizient ist um mehr als 40 % gestiegen.6) In Situationen mit hohen Verdampfungsraten (30–80 %).7) In Situationen, in denen die flüssige Phase des aufgekochten Prozessmediums als Produkt verwendet wird oder hohe Trennungsanforderungen erfordert.8) Gute Korrosionsbeständigkeit. Nachteile:1) Bei Schwerölgeräten, wie Restöl- und Rohölgeräten, gibt es keine Anwendungshistorie.2) Nicht geeignet für Umgebungen mit feuchtem Schwefelwasserstoff.  6.Doppelter RohrbodenwärmetauscherDer Doppelrohrboden-Wärmetauscher (Abbildung 8) hat zwei Rohrböden auf jeder Seite, und ein Ende des Wärmetauscherrohrs ist gleichzeitig mit beiden Rohrböden verbunden. Wird hauptsächlich zum Mischen des Mediums zwischen der Rohrseite und der Mantelseite verwendet, was schwerwiegende Folgen haben kann. Aber die Herstellung ist schwierig; Hoher Designanspruch. 1) Korrosionsschutz: Die Vermischung der beiden Medien der Rohrseite und der Mantelseite kann zu schwerer Korrosion führen.2) Arbeitsschutz: Ein Weg ist ein hochgiftiges Medium, und das Eindringen in den anderen Weg kann zu erheblichen Systemverschmutzungen führen.3) Aus Sicherheitsgründen kann die Vermischung des Mediums auf der Rohrseite und der Mantelseite zu Verbrennungen oder Explosionen führen.4) Verunreinigung der Ausrüstung: Die Vermischung der rohrseitigen und mantelseitigen Medien kann zur Polymerisation oder zur Bildung harzartiger Substanzen führen.5) Katalysatorvergiftung: Die Zugabe eines anderen Mediums kann zu Veränderungen der Katalysatorleistung oder zu chemischen Reaktionen führen.6) Reduktionsreaktion: Wenn das Medium auf der Rohrseite und der Mantelseite vermischt wird, wird die chemische Reaktion beendet oder eingeschränkt.7) Produktverunreinigung: Wenn das Medium im Rohr und Mantel vermischt wird, kann dies zu einer Produktverunreinigung oder einer Verschlechterung der Produktqualität führen. 6.1 Doppelrohrboden-Festrohrbodenwärmetauscher (Abbildung 9)6.2 Doppelrohrplatten-U-Rohr-Wärmetauscher (Abbildung 10)6.3 Doppelrohr-U-Rohr-Kesselaufkocher (Abbildung 11)  7. Rohrbodenwärmetauscher ziehenDer Pull-up-Rohrbodenwärmetauscher (Abbildung 12) hat eine dünnere Rohrbodendicke, normalerweise zwischen 12 und 18 mm. 7.1 Zu den Strukturtypen zählen:(1) Face-to-Face (Deutschland): Der Rohrboden wird auf die Dichtfläche des Geräteflansches geschweißt (Abbildung 12a).(2) Eingelegter Typ (ehemalige Sowjetunion) ГОСТ-Standard): Der Rohrboden ist an die flache Oberfläche der Dichtfläche des Geräteflansches geschweißt (Abbildung 12b).(3) Eckschweißen (früher vom Shanghai Pharmaceutical Design Institute entwickelt): Der Rohrboden wird mit dem Mantel verschweißt (Abbildung 12c). 7.2 Geltungsbereich:1) Auslegungsdruck: Die Rohrseite und die Mantelseite dürfen jeweils 1,0 MPa nicht überschreiten;2) Temperaturbereich: Der Auslegungstemperaturbereich für die Rohrseite und die Mantelseite liegt zwischen 0 ℃ und 300 ℃; Der durchschnittliche Wandtemperaturunterschied zwischen dem Wärmetauscherrohr und dem Mantel darf 30 °C nicht überschreiten;3) Durchmesserbereich: Der Innendurchmesser des Gehäuses darf 1200 mm nicht überschreiten;4) Länge des Wärmetauscherrohrs: nicht mehr als 6000 mm.5) Wärmetauscherrohre sollten aus Leichtrohren bestehen und einen linearen Ausdehnungskoeffizienten haben, der dem des Mantelmaterials nahe kommt (der Werteunterschied zwischen den beiden sollte 10 % nicht überschreiten).7.3. Dehnungsfugen sollten nicht eingebaut werden.  8. Flexibler RohrbodenwärmetauscherGeeignet für horizontale Rohrbündel-Restwärmekessel mit Gas als Medium auf der Rohrseite und gesättigtem Wasserdampf, der auf der Mantelseite erzeugt wird.Die Verbindung zwischen Rohrboden Typ I und Mantel (Kanal) (siehe Abbildung 13a) und die Verbindung zwischen Rohrboden Typ II und Mantel (Kanal) (siehe Abbildung 13b). Anwendbarer Bereich:1) Der Auslegungsdruck auf der Rohrseite darf 1,0 MPa nicht überschreiten, der Auslegungsdruck auf der Mantelseite darf 5,0 MPa nicht überschreiten und der Mantelseitendruck muss größer sein als der Rohrseitendruck;(1) Typ I wird für Rohrauslegungsdrücke kleiner oder gleich 0,6 MPa verwendet;(2) Typ II wird für Rohrleitungskonstruktionsdrücke kleiner oder gleich 1,0 MPa verwendet.2) Der Durchmesser des Mantels und die Länge des Wärmetauscherrohrs betragen 2500 mm bzw. 7000 mm.  9. Effizienter SpiralrohrwärmetauscherUm Investitionen in die Ausrüstung zu sparen, wird die maximale Wärmeübertragungsfläche von Wärmetauscherrohren innerhalb des begrenzten Mantelvolumens des Wärmetauschers angeordnet und die Wärmeübertragungseffizienz verbessert. Daher ist der Rohrbündelwärmetauscher (Abbildung 16) entstanden. Bei dieser Art von Wärmetauscher handelt es sich um ein mehrschichtiges, mehrköpfiges Wärmetauscherrohr aus rostfreiem Stahl mit kleinem Durchmesser, das auf den Kernstab gewickelt und geschweißt ist, wie in Abbildung 16 dargestellt. 10. Wellrohrwärmetauscher aus austenitischem Edelstahl1) Anwendbarer Geltungsbereich:(1) Der Auslegungsdruck darf 4,0 MPa nicht überschreiten;(2) Die Auslegungstemperatur darf 300 °C nicht überschreiten;(3) Der Nenndurchmesser darf 2000 mm nicht überschreiten;(4) Der Nenndurchmesser darf das 4000-fache des Produkts aus dem Auslegungsdruck nicht überschreiten.2) Unangemessene Anlässe(1) Medien mit extremer oder hochgefährlicher Toxizität;(2) Explosive Medien;(3) In Situationen, in denen eine Tendenz zur Spannungskorrosion besteht.  Wuxi Changrun hat hohe Qualität geliefert Rohrböden, Düsen, Flanscheund kundenspezifische Schmiedeteile für Wärmetauscher, Kessel, Druckbehälter usw. an viele namhafte petrochemische Unternehmen im In- und Ausland. Zu unseren Kunden zählen PetroChina, Sinopec, Chevron, Bayer, Shell, BASF usw. Senden Sie Ihre Zeichnungen an sales@wuxichangrun.com Wir unterbreiten Ihnen das beste Angebot und die hochwertigsten Produkte.
    WEITERLESEN
  • Kenntnisse und Berechnungsmethoden des Schmiedeverhältnisses
    May 20, 2024
    Das Schmiedeverhältnis ist ein Indikator, der den Grad der Metallverformung während des Schmiedeprozesses anzeigt und normalerweise als Verhältnis der Querschnittsfläche des Metalls vor und nach dem Schmieden definiert wird. Die Berechnungsmethode für das Umformverhältnis kann das Dehnungs-Umformverhältnis oder das Stauch-Umformverhältnis sein. Das Dehnungsschmiedeverhältnis bezieht sich auf das Verhältnis der Querschnittsfläche des Stahlbarrens oder -knüppels vor der Dehnung zur Querschnittsfläche nach der Dehnung. Das Stauch-Schmiedeverhältnis, auch Stauchverhältnis oder Stauchverhältnis genannt, bezieht sich auf das Verhältnis der Querschnittsfläche des Stahlbarrens oder Knüppels nach dem Stauchen zur Querschnittsfläche vor dem Stauchen. Die Auswahl des Schmiedeverhältnisses ist entscheidend für die Gewährleistung der Qualität und Leistung von Schmiedestücken. Dabei müssen Faktoren wie unterschiedliche Metallmaterialien, Anforderungen an die Schmiedeleistung, Prozessarten sowie Form und Größe der Schmiedestücke berücksichtigt werden. Beispielsweise erfordern Barren aus legiertem Baustahl typischerweise ein größeres Schmiedeverhältnis, während Elektroschlacke-Stahlbarren eine bessere Qualität haben und ein kleineres Schmiedeverhältnis erfordern. Die Größe des Schmiedeverhältnisses wirkt sich direkt auf die mechanischen Eigenschaften und die Schmiedequalität des Metalls aus. Eine Erhöhung des Schmiedeverhältnisses trägt zur Verbesserung der Struktur und der Eigenschaften des Metalls bei, zu hohe Schmiedeverhältnisse können jedoch auch zu unnötigem Abfall und erhöhter Arbeitsbelastung führen. Um die Qualität der Schmiedestücke sicherzustellen, ist es daher ratsam, ein möglichst kleineres Schmiedeverhältnis zu wählen.  1. Grundlegende Definition des SchmiedeverhältnissesDas Verhältnis der Querschnittsfläche eines Metallbarrens vor und nach dem Schmieden wird als Schmiedeverhältnis bezeichnet. Es stellt die Größe der Schmiedeverformung dar und das Schmiedeverhältnis kann mit der folgenden Formel berechnet werden:  2. Berechnungsmethoden für das SchmiedeverhältnisNotiz:(1) Das Schmiedeverhältnis von abgeschrägten Stahlbarren ist nicht im Gesamtschmiedeverhältnis enthalten;(2) Bei kontinuierlicher Streckung oder Stauchung ist das Gesamtschmiedeverhältnis gleich dem Produkt der Teilschmiedeverhältnisse;(3) Bei einer Dehnung zwischen zwei Stauchungen und bei einer Dehnung zwischen zwei Stauchungen ist das Gesamtschmiedeverhältnis gleich der Summe der beiden Unterschmiedeverhältnisse und es ist erforderlich, dass jedes Unterschmiedeverhältnis nicht weniger als 2 beträgt.  Über uns:Wuxi Changrun hat hohe Qualität geliefert Rohrböden, Düsen, Flanscheund kundenspezifische Schmiedeteile für Wärmetauscher, Kessel, Druckbehälter usw. an viele namhafte petrochemische Unternehmen im In- und Ausland. Zu unseren Kunden zählen PetroChina, Sinopec, Chevron, Bayer, Shell, BASF usw. Senden Sie Ihre Zeichnungen an sales@wuxichangrun.com Wir unterbreiten Ihnen das beste Angebot und die hochwertigsten Produkte.  Unser Unternehmen verfügt über 27 internationale und inländische Bohrgeräte erstklassiger Marken, darunter 11 Tieflochbohrgeräte. Wir verfügen über Vorteile wie große Verarbeitungsspezifikationen (maximaler Durchmesser von 8,6 m), Serienfertigung, ausgereifte Prozesspläne und standardisierte Qualitätskontrolle. Die verarbeiteten Rohrbodenprodukte werden häufig in Branchen wie Meerwasserentsalzung, Wärmetauschern, Druckbehältern, Papiermaschinen, Erdölraffinerien, Dampfturbinen und Kernkraft eingesetzt. 
    WEITERLESEN

Eine Nachricht hinterlassen

Eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
einreichen

heim

Produkte

whatsApp

Kontakt